skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garcia, Bradford"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We prove an asymptotic formula for the second moment of central values of DirichletL-functions restricted to a coset. More specifically, consider a coset of the subgroup of characters modulodinside the full group of characters moduloq. Suppose that$$\nu _p(d) \geq \nu _p(q)/2$$for all primespdividingq. In this range, we obtain an asymptotic formula with a power-saving error term; curiously, there is a secondary main term of rough size$$q^{1/2}$$here which is not predicted by the integral moments conjecture of Conrey, Farmer, Keating, Rubinstein, and Snaith. The lower-order main term does not appear in the second moment of the Riemann zeta function, so this feature is not anticipated from the analogous archimedean moment problem. We also obtain an asymptotic result for smallerd, with$$\nu _p(q)/3 \leq \nu _p(d) \leq \nu _p(q)/2$$, with a power-saving error term fordlarger than$$q^{2/5}$$. In this more difficult range, the secondary main term somewhat changes its form and may have size roughlyd, which is only slightly smaller than the diagonal main term. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026